Search results for "Respiratory chain"

showing 10 items of 96 documents

Repurposing of Bromocriptine for Cancer Therapy

2018

Bromocriptine is an ergot alkaloid and dopamine D2 receptor agonist used to treat Parkinson’s disease, acromegaly, hyperprolactinemia, and galactorrhea, and more recently diabetes mellitus. The drug is also active against pituitary hormone-dependent tumors (prolactinomas and growth-hormone producing adenomas). We investigated, whether bromocriptine also inhibits hormone-independent and multidrug-resistant (MDR) tumors. We found that bromocriptine was cytotoxic towards drug-sensitive CCRF-CEM, multidrug-resistant CEM/ADR5000 leukemic cells as well as wild-type or multidrug-resistant ABCB5-transfected HEK293 cell lines, but not sensitive or BCRP-transfected multidrug-resistant MDA-MB-231 brea…

0301 basic medicineAbcg2DNA damageDNA repairCellneoplasmsergot alkaloids03 medical and health sciencesDopamine receptor D2AcromegalymedicinePharmacology (medical)Original ResearchbromocriptinepharmacogenomicsPharmacologydrug repurposingbiologybusiness.industrylcsh:RM1-950medicine.diseaseBromocriptinelcsh:Therapeutics. Pharmacology030104 developmental biologymedicine.anatomical_structureMitochondrial respiratory chainCancer researchbiology.proteinbusinessmedicine.drugFrontiers in Pharmacology
researchProduct

Oxygen Use in Neonatal Care: A Two-edged Sword

2017

In the neonatal period, the clinical use of oxygen should be taken into consideration for its beneficial and toxicity effects. Oxygen toxicity is due to the development of reactive oxygen species (ROS) such as OH• that is one of the strongest oxidants in nature. Of note, generation of ROS is a normal occurrence in human and it is involved in a myriad of physiological reactions. Anyway an imbalance between production of oxidant species and antioxidant defenses, called oxidative stress, could affect various aspect of organisms' physiology and it could determine pathological consequences to living beings. Neonatal oxidative stress is essentially due to decreased antioxidants, increased ROS, or…

0301 basic medicineAntioxidantmedicine.medical_treatmentIschemiaPhysiologyReviewmedicine.disease_causePediatrics03 medical and health sciences0302 clinical medicine030225 pediatricsnewborn infantsmedicineoxidative stressOxygen toxicitychemistry.chemical_classificationHyperoxiareactive oxygen speciesReactive oxygen speciesbusiness.industryHypoxia (medical)medicine.diseasemitochondria030104 developmental biologyMitochondrial respiratory chainchemistryfree ironPediatrics Perinatology and Child HealthImmunologymedicine.symptombusinessoxygenOxidative stressFrontiers in Pediatrics
researchProduct

Enniatin B induces expression changes in the electron transport chain pathway related genes in lymphoblastic T-cell line

2018

Abstract Enniatin B is a ionophoric and lipophilic mycotoxin which reaches the bloodstream and has the ability to penetrate into cellular membranes. The purpose of this study was to reveal changes in the gene expression profile caused by enniatin B in human Jurkat lymphoblastic T-cells after 24 h of exposure at 1.5, 3 and 5 μM by next generation sequencing. It was found that up to 27% of human genome expression levels were significantly altered (5750 genes for both down-regulation and up-regulation). In the three enniatin B concentrations studied 245 differentially expressed genes were found to be overlapped, 83 were down and 162 up-regulated. ConsensusPathDB analysis of over-representation…

0301 basic medicineCellular respirationT-LymphocytesDown-RegulationMitochondrionToxicologyJurkat cellsTranscriptomeJurkat Cells03 medical and health sciences0404 agricultural biotechnologyDepsipeptidesGene expressionHumansGeneChemistryRespiratory chain complexNucleoside monophosphate metabolic process04 agricultural and veterinary sciencesGeneral MedicinePrecursor Cell Lymphoblastic Leukemia-Lymphoma040401 food scienceUp-RegulationCell biologyGene Expression Regulation Neoplastic030104 developmental biologyElectron Transport Chain Complex ProteinsTranscriptomeFood ScienceFood and Chemical Toxicology
researchProduct

Adipocytes as a Link Between Gut Microbiota-Derived Flagellin and Hepatocyte Fat Accumulation

2016

While the role of both elevated levels of circulating bacterial cell wall components and adipose tissue in hepatic fat accumulation has been recognized, it has not been considered that the bacterial components-recognizing adipose tissue receptors contribute to the hepatic fat content. In this study we found that the expression of adipose tissue bacterial flagellin (FLG)-recognizing Toll-like receptor (TLR) 5 associated with liver fat content (r = 0.699, p = 0.003) and insulin sensitivity (r = -0.529, p = 0.016) in humans (n = 23). No such associations were found for lipopolysaccharides (LPS)-recognizing TLR4. To study the underlying molecular mechanisms of these associations, human HepG2 he…

0301 basic medicineGlycerollcsh:MedicineAdipose tissueWhite adipose tissueflagellinBiochemistryImmune ReceptorsFatsEndocrinologyAnimal CellsAdipocytesMedicine and Health SciencesInsulinlcsh:ScienceToll-like ReceptorsConnective Tissue CellsMultidisciplinaryImmune System ProteinsbiologyLiver DiseasesFatty liverin kaltaiset reseptorit [toll]Lipidsadipose tissuePhysical sciencesChemistryMitochondrial respiratory chainAdipose TissueConnective Tissuebacterial componentsCellular TypesAnatomyinsuline sensitivityResearch ArticleSignal Transductionmedicine.medical_specialtyadipocytesImmunologyMonomers (Chemistry)Gastroenterology and Hepatologyta311103 medical and health sciencesInsulin resistanceInternal medicinemedicinePolymer chemistryDiabetic Endocrinologylcsh:Rta1183ta1182Biology and Life SciencesProteinsCell Biologyliver fatmedicine.diseasehepatic fatfat accumulationHormonesIRS1Fatty LiverInsulin receptor030104 developmental biologyEndocrinologyBiological TissueTLR5biology.proteinlcsh:QPLoS ONE
researchProduct

Metabolic Engineering of Bacterial Respiration: High vs. Low P/O and the Case of Zymomonas mobilis

2019

Respiratory chain plays a pivotal role in the energy and redox balance of aerobic bacteria. By engineering respiration, it is possible to alter the efficiency of energy generation and intracellular redox state, and thus affect the key bioprocess parameters: cell yield, productivity and stress resistance. Here we summarize the current metabolic engineering and synthetic biology approaches to bacterial respiratory metabolism, with a special focus on the respiratory chain of the ethanologenic bacterium Zymomonas mobilis. Electron transport in Z. mobilis can serve as a model system of bacterial respiration with low oxidative phosphorylation efficiency. Its application for redox balancing and re…

0301 basic medicineHistologyAerobic bacterialcsh:Biotechnologyrespiratory chainBiomedical EngineeringRespiratory chainBioengineering02 engineering and technologyOxidative phosphorylationZymomonas mobilisMetabolic engineeringredox balance03 medical and health scienceslcsh:TP248.13-248.65RespirationBioprocessstress resistencebiologyenergy couplingChemistryZymomonas mobilis021001 nanoscience & nanotechnologybiology.organism_classificationElectron transport chain030104 developmental biologyBiochemistry0210 nano-technologymetabolic engineeringBiotechnologyFrontiers in Bioengineering and Biotechnology
researchProduct

Relevance of NADH Dehydrogenase and Alternative Two-Enzyme Systems for Growth of Corynebacterium glutamicum With Glucose, Lactate, and Acetate

2021

The oxidation of NADH with the concomitant reduction of a quinone is a crucial step in the metabolism of respiring cells. In this study, we analyzed the relevance of three different NADH oxidation systems in the actinobacterial model organism Corynebacterium glutamicum by characterizing defined mutants lacking the non-proton-pumping NADH dehydrogenase Ndh (Δndh) and/or one of the alternative NADH-oxidizing enzymes, L-lactate dehydrogenase LdhA (ΔldhA) and malate dehydrogenase Mdh (Δmdh). Together with the menaquinone-dependent L-lactate dehydrogenase LldD and malate:quinone oxidoreductase Mqo, the LdhA-LldD and Mdh-Mqo couples can functionally replace Ndh activity. In glucose minimal medium…

0301 basic medicineHistologylcsh:Biotechnologyrespiratory chain030106 microbiologyMutantBiomedical EngineeringRespiratory chainmalate dehydrogenaseBioengineeringDehydrogenaseMalate dehydrogenaseCorynebacterium glutamicum03 medical and health scienceschemistry.chemical_compoundNAD+/NADH ratioddc:570lcsh:TP248.13-248.65Lactate dehydrogenaseOriginal ResearchbiologyWild typeNADH dehydrogenaseBioengineering and BiotechnologyNADH dehydrogenaselactate dehydrogenaseSugR030104 developmental biologyBiochemistrychemistrybiology.proteinmalate:quinone oxidoreductaseBiotechnologyFrontiers in Bioengineering and Biotechnology
researchProduct

C2orf69 mutations disrupt mitochondrial function and cause a multisystem human disorder with recurring autoinflammation

2021

BACKGROUND. Deciphering the function of the many genes previously classified as uncharacterized open reading frame (ORF) would complete our understanding of a cell’s function and its pathophysiology. METHODS. Whole-exome sequencing, yeast 2-hybrid and transcriptome analyses, and molecular characterization were performed in this study to uncover the function of the C2orf69 gene. RESULTS. We identified loss-of-function mutations in the uncharacterized C2orf69 gene in 8 individuals with brain abnormalities involving hypomyelination and microcephaly, liver dysfunction, and recurrent autoinflammation. C2orf69 contains an N-terminal signal peptide that is required and sufficient for mitochondrial…

0301 basic medicineMicrocephalyRespiratory chainBiologyMitochondrionCell LineMitochondrial ProteinsTranscriptomeMiceOpen Reading Frames03 medical and health sciencesAll institutes and research themes of the Radboud University Medical Center0302 clinical medicineLoss of Function MutationGlycogen branching enzymemedicineAnimalsHumansGeneMice KnockoutGeneticsMetabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6]Glycogen Debranching Enzyme SystemGeneral Medicinemedicine.diseaseMitochondriaOpen reading frameRenal disorders Radboud Institute for Molecular Life Sciences [Radboudumc 11]030104 developmental biology030220 oncology & carcinogenesisMicrocephalybiology.proteinClinical MedicineSignal transductionGlycogenJournal of Clinical Investigation
researchProduct

Transcriptomic study of the toxic mechanism triggered by beauvericin in Jurkat cells

2018

Beauvericin (BEA), an ionophoric cyclic hexadepsipeptide mycotoxin, is able to increase oxidative stress by altering membrane ion permeability and uncoupling oxidative phosphorylation. A toxicogenomic study was performed to investigate gene expression changes triggered by BEA exposure (1.5, 3 and 5 mu M; 24 h) in Jurkat cells through RNA-sequencing and differential gene expression analysis. Perturbed gene expression was observed in a concentration dependent manner, with 43 differentially expressed genes (DEGs) overlapped in the three studied concentrations. Gene ontology (GO) analysis showed several biological processes related to electron transport chain, oxidative phosphorylation, and cel…

0301 basic medicineProgrammed cell deathCYTOCHROME-C RELEASEBCL-2 FAMILYCell Membrane PermeabilityRespiratory chainCell Culture TechniquesCASPASE-3 ACTIVATIONApoptosisOxidative phosphorylationCHO-K1 CELLSToxicologyJurkat cellsOxidative PhosphorylationElectron Transport03 medical and health sciencesJurkat CellsFUSARIUM MYCOTOXINSImmunotoxicologyDepsipeptidesHumansREAL-TIME PCROXIDATIVE STRESSTranscriptomicsCaspaseINDUCED APOPTOSISLEUKEMIA-CELLS030102 biochemistry & molecular biologybiologyDose-Response Relationship DrugChemistryJurkatGene Expression ProfilingBcl-2 familyDEATHGeneral MedicineBeauvericinToxicogenomicsCell biologyGene expression profiling030104 developmental biologyMitochondrial respiratory chainGene Ontologybiology.proteinRNA-seqTranscriptomeToxicology Letters
researchProduct

Aerobic catabolism and respiratory lactate bypass in Ndh-negative Zymomonas mobilis

2018

Ability to ferment in the presence of oxygen increases the robustness of bioprocesses and opens opportunity for novel industrial setups. The ethanologenic bacterium Zymomonas mobilis performs rapid and efficient anaerobic ethanol fermentation, yet its respiratory NADH dehydrogenase (Ndh)-deficient strain (ndh-) is known to produce ethanol with high yield also under oxic conditions. Compared to the wild type, it has a lower rate of oxygen consumption, and an increased expression of the respiratory lactate dehydrogenase (Ldh). Here we present a quantitative study of the product spectrum and carbon balance for aerobically growing ndh-. Ldh-deficient and Ldh-overexpressing ndh- strains were con…

0301 basic medicinelcsh:BiotechnologyEndocrinology Diabetes and Metabolism030106 microbiologyBiomedical EngineeringRespiratory chainBioethanolEthanol fermentationZymomonas mobilisArticle03 medical and health scienceschemistry.chemical_compoundlcsh:TP248.13-248.65Lactate dehydrogenaselcsh:QH301-705.5biologyCatabolismZymomonas mobilisNADH dehydrogenaseLactate dehydrogenaseNADH dehydrogenaseMetabolismRespiratory chainbiology.organism_classificationlcsh:Biology (General)chemistryBiochemistryOxidative stressbiology.proteinAnaerobic exerciseMetabolic Engineering Communications
researchProduct

Olesoxime improves cerebral mitochondrial dysfunction and enhances Aβ levels in preclinical models of Alzheimer's disease.

2019

Abstract Background Approved drugs for Alzheimer's disease (AD) only have a symptomatic effects and do not intervene causally in the course of the disease. Olesoxime (TRO19622) has been tested in AD disease models characterized by improved amyloid precursor protein processing (AβPP) and mitochondrial dysfunction. Methods Three months old Thy-1-AβPPSL (tg) and wild type mice (wt) received TRO19622 (100 mg/kg b.w.) in supplemented food pellets for 15 weeks (tg TRO19622). Mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) levels were determined in dissociated brain cells (DBC). Respiration was analyzed in mitochondria isolated from brain tissue. Citrate synthase (CS) activ…

0301 basic medicinemedicine.medical_specialtyRespiratory chainMice TransgenicMitochondrionLipid peroxidation03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineDevelopmental NeuroscienceAlzheimer DiseaseInternal medicineMembrane fluidityAmyloid precursor proteinmedicineCitrate synthaseAnimalsHumansCholestenonesAmyloid beta-PeptidesbiologyBrainRotenoneMitochondriaMice Inbred C57BLDisease Models Animal030104 developmental biologyEndocrinologyHEK293 CellsNeurologychemistrybiology.proteinOlesoximeFemale030217 neurology & neurosurgeryExperimental neurology
researchProduct